
Learning Finite-State Controllers for Partially Observable Environments

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim and Leslie Pack Kaelbling
Computer Science Department, Box 1910, Brown University, Providence, RI 02912-1910�

nm, ldp, kek, lpk � @cs.brown.edu

Abstract

Reactive (memoryless) policies are sufficient
in completely observable Markov decision pro-
cesses (MDPs), but some kind of memory is
usually necessary for optimal control of a par-
tially observable MDP. Policies with finite mem-
ory can be represented as finite-state automata.
In this paper, we extend Baird and Moore’s
VAPS algorithm to the problem of learning gen-
eral finite-state automata. Because it performs
stochastic gradient descent, this algorithm can be
shown to converge to a locally optimal finite-
state controller. We provide the details of the
algorithm and then consider the question of un-
der what conditions stochastic gradient descent
will outperform exact gradient descent. We con-
clude with empirical results comparing the per-
formance of stochastic and exact gradient de-
scent, and showing the ability of our algorithm
to extract the useful information contained in the
sequence of past observations to compensate for
the lack of observability at each time-step.

1 INTRODUCTION

Learning an optimal policy in a large partially observable
environment is a recurrent problem in many application do-
mains of AI. However, there is no known technique that
scales up well to increasing size and difficulty of the prob-
lem. This situation is due in part to the fact that plan-
ning in partially observable environments is itself a diffi-
cult task, hence learning to plan cannot be much easier.
The partially observable Markov decision process (POMDP)
provides a formal framework for studying these problems
[1, 27, 28, 7, 11, 6, 16]. The difficulty of planning in par-
tially observable environments is illustrated by the fact that
the optimal policy of a POMDP may use the complete pre-
vious history of the system (i.e., the whole sequence of ob-
servations, actions and rewards since time 0) to determine

the next action to perform. Therefore, we need an infinite
memory if we want to act optimally over an infinite hori-
zon.

A general way to represent policies is in the form of state-
automata, or as we will call them, policy graphs. Ev-
ery policy has a representation in the form of a (possi-
bly infinite) policy graph. A priori, the optimal solution
of a POMDP may well be an infinite policy graph. How-
ever, because of evident computational limits, we may re-
duce the search to policies representable as finite policy
graphs. Many existing algorithms for learning to plan in
POMDPs rely on a similar assumption. For instance, some
researchers [14, 3, 32] try to learn memoryless (or re-
active) policies, McCallum’s learning algorithm [19, 20]
uses a finite-horizon memory, Wiering and Schmidhuber’s
HQL [31] learns finite sequences of reactive policies using
an implicit memory of some of the previous observations,
and Peshkin et al. [23] look for optimal finite-external-
memory policies. All these finite-memory architectures
correspond to finite policy graphs with a particular struc-
ture in each case (i.e. not every node-transition and choice
of action is possible in the graph). 1

Most previous examples of search in the finite policy-
graph-space [25, 8, 9, 10] use the criterion of � -optimality:
they search for a finite graph whose value is less than �
from the value of the optimal—Bayesian—solution. There-
fore, they need to work explicitly in the continuous space
of belief functions, which is a cumbersome and sometimes
intractable process. Another approach uses EM to find a
finite controller that is optimal over a finite horizon [12].

In a companion paper [22], we proposed to solve problems
with a very large state-space by fixing the size of the policy
graph and trying to find the best graph of this size. We may
then hope to find a graph-size that realizes a good com-
promise between the quality of the solution and the time
required for finding it. This approach allows by-passing

1Note that, even though they can remember only a finite num-
ber of events, general (unconstrained) finite policy graphs can re-
member events arbitrarily far in the past.

the belief-state space, and performing all the computation
in a discrete setting, like in completely observable Markov
decision processes (MDPs) [13, 24].2 However, the algo-
rithms do not provide any evaluation of the quality of the
solution produced relative to the optimal performance.

As we showed in the companion paper [22], finding the best
finite policy graph of a given size is NP-hard. However,
some classical optimization techniques such as branch-and-
bound search and gradient descent can be accelerated using
previous knowledge about the structure of the problem at
hand and its optimal solution. Despite this leverage, these
techniques do not escape enumerating the set of all states
of the POMDP at least once per iteration (they are at least in����� ��� �

, where
�

is the state-space of the POMDP). Hence,
they cannot be applied to problems with a very large num-
ber of states, such as combinatorial problems where the
state of the process is a vector of several state-features, and,
therefore, the number of states is exponential in the num-
ber of features. Moreover, they require a complete initial
knowledge of the parameters of the POMDP, i.e., they can-
not be used to learn a policy without first learning a model
of the environment.

Direct (model-free) learning of a policy during a (possi-
bly simulated) interaction with the process is becoming a
classical technique for planning in very large state-spaces
[4, 17, 30]. The idea is to perform stochastic gradient de-
scent by sampling state transitions and rewards during the
experience. Because we sample only possible (and even
reasonably probable) trajectories, the algorithm may be
much more efficient than an exact method that enumerates
every trajectory, including impossible and very low proba-
bility ones. This is the principle at the basis of most suc-
cessful application of reinforcement learning (RL) to real
world problems.

In this paper, we propose a model-free algorithm for learn-
ing general finite policy graphs of a given size. This algo-
rithm can be used to learn finite-memory policies in some
environments with a large number of states. As it is per-
forming stochastic gradient descent in the parameters of
the policy graph, it is ensured to converge to a local op-
timum. It is basically an extension of Baird and Moore’s
VAPS algorithm [3] for learning simple reactive policies.
This constitutes a significant improvement to the original
VAPS, since the restriction to reactive policies is a severe
handicap in most partially observable domains. 3

The paper is organized as follows. First, we give a quick

2However the optimality criterion used is the same as in the
Bayesian approach, i.e., the expected discounted cumulative re-
wards, the expectation being relative to the prior belief on the
states

3Singh et al. [26] showed that stochastic reactive policies can
perform arbitrarily better than deterministic ones. However, it is
also proven that the best stochastic reactive policy can be arbitrar-
ily worse that the optimal memory-based policy.

introduction to POMDPs and policy graphs. Second, we de-
velop the formalism of Baird and Moore’s VAPS algorithm
in the general framework of finite policy graphs. This rep-
resents the main contribution of the paper. Then we discuss
the conditions under which stochastic gradient descent can
outperform exact gradient descent (which is possible only
when the problem is known in advance). Finally, we use
the pole-balancing problem to show that our algorithm can
solve difficult real-world problems with limited observabil-
ity of the state of the system.

2 POMDPs AND FINITE POLICY
GRAPH

2.1 POMDPs

A partially observable Markov decision process (POMDP)
is defined as a tuple � �
	���	��	���	���	���� where:� � is the (finite) set of states;� � is the (finite) set of observations;� is the (finite) set of actions;� ������	������ �"!��#��$"�%�����&$'� �(� for all) ;� �*����	�+,	��&-#�'� �"!��.�&$./
01� �2-����&$'� ��	�+3$'�4+5� for all) ;�76 $1�8�9�.�:	�+,	2�2-#� if

�&$;�8�
,
+3$;�<+

and
�2$�/
0=�>�&-

, for
all) .

The underlying Markov decision process (MDP)�.�
	�*	���	����
is optimized in the following way [13, 24]:

given an initial state
�&?

, the aim is to maximize the
expected discounted cumulative reward

@%ACBD $.E,?"F $ 6 $ �:� ?HG 	
where FJILKNM 	�O(� is the discount factor. The optimal solu-
tion is a mapping P
Q�R �JST . It is a remarkable property
of MDPs that there exists an optimal policy that always exe-
cutes the same action in the same state. Unfortunately, this
policy can not be used in the partially observable frame-
work, because of the residual uncertainty on the current
state of the process.

In a POMDP, a policy is a rule specifying the action to per-
form at each time step as a function of the whole previous
history, i.e., the complete sequence of observation-action
pairs since time 0. A particular kind of policy, the so-called
reactive policies (RPs), condition the choice of the next ac-
tion only on the last observation. Thus, they can be rep-
resented as mappings PUR �VSW . Given a probability

distribution �
?

over the starting state, each policy P (reac-
tive or not) realizes an expected cumulative reward:

@ A BD $.E,?
F $ 6 $ � � ? 	 P G � (1)

The classical—Bayesian—approach allows us to determine
the policy that maximizes this value. It is based on up-
dating the state distribution (or belief) at each time step,
depending on the most recent observations [7, 11, 6, 16].
The problem is reformulated as a new MDP using belief-
states instead of the original states. Generally, the optimal
solution is not a reactive policy. It is a sophisticated behav-
ior, with optimal balance between exploration and exploita-
tion. Unfortunately, the Bayesian calculation is highly in-
tractable as it searches the continuous space of beliefs and
considers every possible sequence of observations.

2.2 FINITE POLICY GRAPHS

A policy graph for a given POMDP is a graph where the
nodes are labeled with actions

+ I , the arcs are labeled
with observations

� I � , and there is one and only one
arc emanating from each node for each possible observa-
tion. When the system is in a certain node, it executes the
action associated with this node. This implies a state transi-
tion in the POMDP and eventually a new observation (which
depends on the arrival state of the underlying MDP). This
observation itself conditions a transition in the policy graph
to the destination node of the arc associated with the new
observation. We are interested in stochastic policy graphs
where action-choices and node-transitions are probabilis-
tic. We will use the following notation:��� is the set of nodes of the graph,��� $ I � is the current node at time) ,��� � � 	�+5� is the probability of choosing action

+
in node

� I � :

� � � 	�+5���
	��� �"!��#+ $ �4+ � � $ � � ��	��� !������) 	��� � � 	��3	 � - � is the probability of moving from node � I� to node �
- I � , after observation

� I � :

� � � 	��3	 � - ���
	��� �"!H� � $./
0 � � - � � $ � ��� � $./
0 �4����	
for all) ,��� ? is the probability distribution of the initial node � ?
conditioned on the first observation

��?
:

� ? �#�3	 � � �
	��� � ! � � ? � � �H� ? �4��� �
Figure 1 illustrates the functioning of policy graphs in
POMDPs.

ta

t+1n

t+1o

t+1s

tn

ts

Figure 1: Influence diagram illustrating functioning of pol-
icy graphs in POMDPs. Dotted arrows represent dependen-
cies that we did not take into account here, but that are
sometimes represented in other formulations.

Every policy has a representation as a possibly infinite pol-
icy graph. A policy that chooses a different action for each
possible previous history will be represented by an infinite
tree with a branch for each possible history. Reactive poli-
cies correspond to a special kind of finite policy graph with
as many nodes as there are observations in the POMDP, and
whose structure is fixed. Other finite-memory architectures
such as HQL’s finite RP-sequences and finite external mem-
ory policies also correspond to finite policy graph with spe-
cial structural constraints. 4

2.3 FINDING AN OPTIMAL POLICY GRAPH

The problem of finding the optimal policy graph of a given
size is studied in a companion paper [22]. The principle of
this study is to exploit the Markov property of the associa-
tion between POMDPs and finite policy graphs. It ends up
with the proposition of algorithms that scale up relatively
well with respect to the size of the problem, but that are
more sensitive to the size of the policy graph.

Although these methods enable the solution of problems
with up to 1000 states in a reasonable time, this approach
is fundamentally limited by the necessity to enumerate the
complete set of states of the POMDP, at least once at each
time step. Thus, they will fail to solve problems with ex-
ponentially many states, such as the huge combinatorial
problems often met in the real world. Moreover, these al-
gorithms are basically planning algorithms, i.e., they re-
quire complete and accurate preliminary knowledge of the
POMDP parameters, and they cannot be used to learn the
policy on-line.

A possible solution to overcome the curse of dimension-
ality of the state space consists of having a direct (model-
free) reinforcement learning (RL) algorithm learn a policy
during a (possibly simulated) interaction with the process
[4, 17, 30]. We then concentrate the computation on the

4In the most general definition of finite-state automata, the
next node depends not only on the previous node and observation,
but also on the last action (this is the case, for instance, of graphs
representing external-memory policies). The algorithm presented
here can easily be generalized to this framework.

most interesting parts of the state-space, neglecting highly
unlikely state-transitions. The rest of the paper presents a
model-free algorithm for learning finite-state controllers of
a given size. It can be used in a simulated experience pro-
tocol, as well as for learning in a direct interaction with the
real environment or process.

3 STOCHASTIC GRADIENT DESCENT
IN GENERAL FINITE POLICY
GRAPHS

Baird and Moore’s VAPS algorithm [3] learns a reactive pol-
icy through trial-based interaction with the process to be
optimized. It is based on performing stochastic gradient de-
scent of a general error measure, and hence it can be tuned
to converge to a local optimum of this error measure with
probability 1. The formalism proposed encompasses any
kind of error ranging from the classical Belman-residual
often used in Markovian environments (i.e., TD(0)), to the
TD(1) error that uses the sum of all the rewards received
during the trial [29, 30]. This is the origin of the name
of the algorithm: value (TD(0)) and policy (TD(1)) search.
Others possible errors include those used in SARSA and in
advantage learning.

Despite this robustness to the type of error used, VAPS is
limited because it learns only memoryless policies. Hence
it will not be effective in many partially observable envi-
ronments. In this paper, we extend it so that the structure
of the policy graph does not have to be completely fixed in
advance, as is the case with RPs. More precisely, our algo-
rithm can learn a general finite policy graph of a given size,
possibly with simple structural constraints. We now de-
velop the formalism of VAPS in general finite policy graphs.
The presentation directly follows that of Baird and Moore
[3].

3.1 ERROR FUNCTIONS

First we assume that the problem is a goal-achievement
task, i.e., that there exists an absorbing goal-state that the
system must reach as fast as possible. We also assume that
the goal-state is associated with a unique observation

� �
that no other state produces (the system always knows with
certainty when it has reached its goal). Then we can write
our high-level optimality criterion as an expectation over
trajectories:���9� BD� E,? D���� ��
	 �"!�����9� � ? 	 P ��3����H�J	 (2)

where
�� � is the set of all experience sequences that termi-

nate at time
�

, i.e.,�� � � � ? 	 � ? 	�+ ? 	 6 ? 	 � � � 	�� $ 	 � $ 	�+ $ 	 6 $ 	 � ��� 	�� � 	 � � 	�+ � 	 6 � � 	

� � �4� � 	
and

�3������
represents the total error associated with the se-

quence
��
. 5 The total error

�
must be additively separable,

so that

� ������'� �D $.E,? � � �*����) � � 	 ���!�� � ���� I �� � 	
where � �.�H� is an instantaneous error function associated
with each (finite) sequence prefix� � � � ? 	 � ? 	�+ ? 	 6 ? 	 � � � 	�� $ 	 � $ 	�+ $ 	 6 $ �
(
��$

being any observation, not necessarily the goal-
observation

� �), and
�*����) � represents the sequence

��
trun-

cated after time) . We will denote by
� $ the set of all se-

quence prefixes of length) (
�� $�� � $).

There are many possibilities for defining the immediate er-
ror � , including the squared Bellman residual, the error
used in SARSA and the error of advantage learning (see
[2, 3] for details). These three definitions make complete
sense in Markovian environments only. However, they can
be used for POMDPs in an approximate approach (for in-
stance, we can use the error of SARSA to learn RPs in
POMDPs). The algorithm still finds a local optimum of the
error, but nothing guarantees that it will correspond to an
optimal policy. The immediate error�
���������� �.�H����� F $ 6 $ ���!���� � � I � $ 	
induces a TD(1) search adapted to non-Markovian environ-
ment. Notably, if we use this error, then the two criteria
of optimality of a policy, equation (1) and equation (2), are
equal (with opposite signs however). Therefore, it will be
rational to try to minimize

���
with � equal to �
�
�������� .

3.2 STOCHASTIC GRADIENT DESCENT

In a general framework, � and � are represented as para-
metric functions with weights

��� � � . The objective func-
tion
� �

can be re-written as�!� � BD $.E,? D��� ��" �"!���� � � ? 	 P � � ���(� �
Hence we have## �$� ���9� BD $�E,? D��� ��"% �"!��.�9� � ? 	 P � ## �$� � �.�H�'& � ���(� ## �$� �"!(��� � � ? 	 P �)(

5Note that if we are learning an RP as in the initial VAPS al-
gorithm, then *,+ is completely determined by -.+ and thus can be
omitted in sequence / .

for each weight
� �

. The partial derivative of � is in general
easy to calculate. In the case of � �
�������� it is always 0. The
only difficulty is then to differentiate

�"!������ � ? 	 P � . For all� I � $ we have:�"!(����� � ? 	 P ��� $�� E,? �"!H�#� � � � ? 	��*�.�:	���� O(� �
� � � ��� 0 	�� � 	 � � � � � � � 	�+ � �5� !(� 6 � � � ? 	��*����	�� �%O(��	�� � 	�+ � ��	

with the conventions
�*����	
�*O(�����

and � � � � 0H	���?:	 � ?(���
� ? � ��?�	 � ?(� .
If � � � 	�+5�	� M for all

� � 	�+5� , � � � 	��3	 � - �	� M for all� � 	��3	 � - � and � ?3�#�3	 � �
� M for all
� �3	 � � then it can be

shown that 6## � � � � � BD $.E,? D� � � " �"!��.�9� � ? 	 P �
% ## � � � �.�H�

& � �.�H� $D� E,? ## � � ��� � � � � 	�+ � �
& � �.�H� $D� E,? ## �$� �� � � � ��� 0 	�� � 	 � � ���� �

(3)

Therefore, stochastic gradient descent of the error can be
performed by repeating several trials of interaction with the
process. Each experienced trial of length

�
provides one

sample of
� I � $ for each)�� � , which is used to estimate

the expectation over
�

in the above equation. Of course
these samples are not independent, but it does not intro-
duce any bias since we sum the different estimates. During
each trial, the weights are kept constant and the approxi-
mate gradients of the error at each time)## �$� � �.�H�'& � ���(� $D� E
0 � ## �$� ��� � � � ��� 0 	�+ ��� 0 �

& ## � � �� � � � ��� 0 	�� � 	 � � ���
are accumulated. Weights are updated at the end of each
trial, using the sum of these immediate gradients. An in-
cremental implementation of the algorithm can be obtained
by using, at every step) , the following update rules:

�9���� �) � � ## �$� �� � � � $ � 0 	�+ $ � 0 �
�9���� �) � � ## �$� �� � � � $ � 0 	�� $ 	 � $ �
� � � �) � � ��� % ## �$� � ��� $ ��& � ��� $ �&�#���� �) � & ���� �) � � (

6If this condition on � and � is not satisfied, then there exist
zero probability trajectories that have a non-zero contribution to
the gradient [21, 15].

where
� $ � � � ? 	 � ? 	�+ ? 	 6 ? 	 � � � 	�� $ 	H	 � $ 	�+ $ 	 6 $ � represents the

experience prefix at time) , � is the step-size parameter (or
learning rate), and

����
and
����

are the trace sassociated with
weight � in the representation of � and � , respectively. The
complete policy-update performed at the end of the trial is
then given by

� �$� � �D $.E,? � �$� �) �J	
8 where

�
is the length of the trial. Note that the traces���� �) � and
���� �) � are independent of the immediate error �

used. They only depend on the way the policy-graph pa-
rameters vary with the weight

� �
, i.e., on the representa-

tion chosen for these parameters. The main novelty of our
algorithm (compared to the original VAPS) is the use of a
second trace (

� �
), which is analogous to the original trace

(
� �

), but summarizes the node-transition executed during
the trial instead of the action-choices.

3.3 EXAMPLES

If we use look-up tables to store the parameters of the pol-
icy graphs, then there is one weight, denoted �! #"%$, for
each possible

� � 	�+5� , one weight �& '"%()" #* for each possible� � 	��3	 � - � , and one weight � ?()" for each
�#�3	 � � , such that

� � � 	�+5��� � #"%$, � � � 	��3	 � - ��� � '"%()" '* and � ? � �3	 � ��� � ?(�" .
Suppose also that we are using the immediate error � �
� ������ ,
i.e., we are performing a TD(1) search. Then the contribu-
tion to the update of each weight at each time-step in the
sequence can be expressed as:

� � #"%$ �) � � �+� F $ 6 $ � #"%$ �) ��, #"%$ 	
� �� #"%(�" #* �) � � �+� F $ 6 $ �- #"%()" '* �) �� #"%(�" #* 	
� � ?()" �) � � �+� F $ 6 $ � ?()" � ?()" 	

where � '"%$ �) � is the number of times that action
+

has been
executed in node � at time) , � '"%()" * �) � is the number of
times that we moved from node � to node �

-
after observa-

tion
�

between time 0 and) , and � ?�� �3	 � ��� O if
��?�� �

and � ? � � , and � ?3�#�3	 � �"� M otherwise.

Despite its simplicity, the look-up table representation has
several drawbacks. First, the weights

� �
represent proba-

bilities, and thus they are subject to constraints. As a matter
of fact, nothing guarantees that the probabilities will still
belong to KNM 	�O/. and sum to 1 if we apply the update rule de-
scribed above. A classical solution to this problem involves
projecting the gradient on the simplex before applying it.
However it does not eradicate the second drawback of the
look-up table representation, i.e., there is still no guarantee
that � � � 	�+5�0� M and � � � 	��3	 � - �0� M for all � ,

+
,
�
, � - .

Hence, the derivative of
���

may not be equal to equation

(3) in all the points of the policy-graph space. Studying
how to express the gradient in such cases falls beyond the
scope of this paper (see [21, 15]).

In our experiments, we use the soft-max function (or Boltz-
mann law) to represent the parameters of the graphs. In this
case, the weights

� �
are “Q-values”

� � � � 	�+5� , � � � � 	��3	 � - �
and

� ��� �#�3	 � � such that

� � � 	�+5� � ������� '"%$
	���
� $ * ��� � � � � #"%$ * 	��� 	

� � � 	��3	 � - � � ������� '"%()" * 	���
� * * ��� � � � � #"%()" * * 	��� 	

� ? � �3	 � � � ��� � � � (�" �	���
� * ��� � � � � � (�" #*�	��� 	

where � is a temperature parameter. Although it compli-
cates the calculation of the gradient slightly, this represen-
tation avoids both problems of look-up tables: the Q-values
can take any real values, and the induced policy never gives
probability 0 to any choice. The use of the Boltzmann law
may strongly modify the shape of the error function with
respect to the weights

� �
. Hence, it influences the perfor-

mance of gradient algorithms such as VAPS. It is difficult
to say a priori if its influence will be beneficial or negative,
for a given problem.

3.4 VARIANTS AND REMARKS

It is straightforward to extend the algorithm so that it han-
dles simple constraints on the policy graph. If we con-
straint the graph to represent a RP, then the algorithm is
equivalent to Baird and Moore’s original VAPS. Consider
as another example the finite external-memory architecture
used by Peshkin et al. [23]. There are two ways to model
this architecture: either we augment the POMDP state-,
observation- and action-spaces but still use a RP, or we
leave the POMDP unchanged and use a more complex pol-
icy graph than a simple RP (this graph contains ��� � � �
nodes, where � is the number of external memory bits).
In the first case, the probability of changing the content of
the memory is represented in � , in the second case it is rep-
resented in � . Our results are coherent in the sense that, as
the update rule uses � and � in a completely similar way,
the algorithm will be the same whatever the interpretation
chosen. Another possibility is to learn finite RP-sequences
such as in HQL, either using � ���������� , or defining a new error
function ��� �"! based on the HQ-values of the algorithm. In
the first case, we will converge to an RP-sequence which
is locally optimal in the sense of the expected total reward
(1). In the second, we will find a local minimum of the er-
ror, but it may not correspond to a policy that maximizes
(even locally) the expected discounted reward.

Another question is how to treat discounted problems
where there is no goal state, and, therefore, no natural no-

U L

Figure 2: The load/unload problem with 8 locations: the
agent starts in the “Unload” location (U) and receives a re-
ward each time it returns to this place after passing through
the “Load” location (L). The problem is partially observ-
able because the agent cannot distinguish the different lo-
cations in between Load and Unload, and because it can-
not perceive if it is loaded or not (

� ��� � O$#
,
� ���,�&%

and� ���� �).

tion of trial (the so-called maintainance tasks). One possi-
bility for dealing with discounted maintainance task is the
following: at each time step we execute an independent
random drawing to determine if we terminate the trial. We
set the probability to end the trial to be constant and equal
to
� O � F � and we do not discount the rewards received

during the trial, i.e., we use

� -���������� �
	��� � 6 $ �
Then the policy (graph) that maximizes

� �
is also an op-

timal policy graph in the usual sense (equation (1)). This
trick allows TD(1) learning of maintainance tasks, but it
is not adapted to other kinds of immediate error � . Baird
and Moore argue that VAPS can be adapted to discounted
POMDPs whatever the immediate error, but it is not clear
to us how to do this without introducing a bias in the esti-
mates.

4 NUMERICAL SIMULATIONS

In this section, we present the results of two experiments.
The first aims at comparing an exact gradient algorithm
[22] with the stochastic gradient approach of VAPS. The
second shows that our algorithm can solve a moderately-
difficult real-world problem. In all the experiments, we
used the immediate error � ���������� and we initialized the pol-
icy graph with uniform distributions.

4.1 COMPARISON WITH EXACT GRADIENT
DESCENT

A model-free learning algorithm such as VAPS may be used
to learn a policy when we do not know all the parameters
of the POMDP in advance. As explained in section 2.3, it
is also useful when the problem is perfectly known in ad-
vance: the protocol of simulated experience allows opti-
mizing huge problems with sparse structure, by sampling
only the probable trajectories, instead of considering all
trajectories. It is interesting to look at the conditions un-
der which VAPS would be expected to outperform the exact
algorithm.

First, it is to be noted that the exact gradient calculation is

0

0.2

0.4

0.6

0.8

1

0 1 2 3

%
 o

f
op

tim
al

 Clock ticks / 100

Load/unload, gamma = 0.9

exact gradient

VAPS

Figure 3: Learning curves of VAPS and exact gradient de-
scent on the load/unload problem, with F = 0.9: � � O , � is
chosen at its optimal value (for each algorithm), and the re-
sults of stochastic gradient is averaged over 30 experiences.

very sensitive to the size of the state space of the POMDP:
each step of the computation has complexity at least in����� ��� �

. The influence of the size of
�

on VAPS is less
clear: the complexity of updating the weight is independent
of
� ���

, however, a bigger state-space would require (and in-
duce) longer experience trials. In practice, it has been very
easy for us to build a problem with many states and few
observations where VAPS completely outperforms the ex-
act gradient (in terms of real computing time). Therefore,
the first rule is that VAPS scales up much better than ex-
act gradient to problems with big state-spaces. This is not
surprising since handling big state-spaces was precisely the
original motivation of this work.

The second important variable in our comparison is the dis-
count factor F . In general, a bigger F helps (both exact and
stochastic) gradient based algorithms because it increases
the value function and thus makes the gradient steepest.
However, F may have many other (contradictory) effects
on the algorithms. In the case of VAPS, as the trials are
ended with probability

O � F , bigger F will make longer and
hence more instructive trials. On another hand, the exact
gradient calculation requires solving several Belman equa-
tions in the cross-product MDP (cf. section 2.3, [22]). This
is done by successive approximation (or value iteration),
which is very sensitive to F . The bigger the F , the more
iterations needed to reach a given accuracy. There are then
two opposite tendencies in both algorithms: increasing Fcould accelerate them as well as slow them down.

To clarify this point, we ran the exact gradient algorithm
and VAPS on the simple load/unload problem presented in
figure 2 (with 5 locations). The number of nodes of the
graph is fixed to 2, which is the optimal number for this
problem. We tried several values of F ranging from 0.9
to 0.995, and plotted the learning curves produced by both

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

%
 o

f
op

tim
al

 Clock ticks / 100

Load/unload, gamma = 0.995

exact gradient

VAPS

Figure 4: Same as figure 3, but F � M � ����� .

algorithms. These learning curves represent the evolution
of the performance of the current policy (expressed as a
percentage of the optimal performance), as a function of
the real-time spent learning (expressed in computer time-
ticks). Although very simple, load/unload provides an il-
lustration of the mechanism depicted above. With F � M � �the exact gradient clearly outperforms VAPS (cf. figure 3).
When F increases, the difference between the algorithm
vanishes. At F � M � ����� (figure 4), the two techniques are
roughly equivalent. Beyond this point, VAPS dominates
exact gradient descent. The conclusion of this experiments
is that the execution time of both exact and stochastic gra-
dient descent do increase with F , but this increase is more
dramatic in the case of exact gradient.

As a conclusion, stochastic gradient descent can outper-
form exact gradient in problems with large state space and
large discount factor.

4.2 EXPERIMENTS WITH POLE BALANCING

We ran a number of experiments with the pole balancing
problem [30]. This famous problem is known to be solved
by an RP, if the observation at each time-step is composed
of four elements: the cart position � and speed �� , and the
pole angle � and angular speed �� . To measure the difficulty
of the task and the performance of our algorithm, we used
two different settings: a completely observable one where
the four relevant variables � , �� , � and �� can be seen by
the algorithms at each time-step, and a partially observable
setting where both �� and �� are always hidden.

We ran three different algorithms in both settings: SARSA,
Baird and Moore’s original VAPS (learning an RP) and our
extension of VAPS allowing to learn policy graphs, varying
the number of nodes of the graph. SARSA and the origi-
nal VAPS can be expected to succeed in the completely ob-
servable setting, and to fail in the partially observable one
where there is no reactive policy that performs the task.

0

1000

2000

3000

4000

5000

0 20000 40000 60000 80000 100000

A
ve

ra
ge

 p
er

fo
rm

an
ce

Number of trials

Pole Balancing : Completely Observable

SARSA

RP

2NPG

Figure 5: Learning curves obtained with the completely
observable pole-balancing problem. “RP” stands for the
original VAPS algorithm, as proposed by Baird and Moore;
“2NPG” represents our extension of VAPSused with � �
� .

These two algorithms differ radically. On one hand we
use VAPS with the immediate error � �
� ������ which makes
it equivalent to TD(1), Baird and Moore would call this a
pure policy search. On the other hand SARSA is basically
a value-search in the line of TD(0). Our algorithm can be
expected to succeed in both settings, provided that we use a
sufficiently large policy graph, and that algorithm does not
get stuck on a local optimum. Two nodes should be enough
in the completely observable setting, since every reactive
policy using only two actions (as it is the case here) can
be represented by a two-node policy graph. In the partially
observable framework, more nodes must be added to allow
the algorithm memorize past observations.

In all experiments the discount factor F was set to � ��� and
increased gradually as learning progressed. The learning
rate

�
was optimized independently for each algorithm.

The performance of the algorithm was measured by fixing
the policy and executing 200 trials, measuring the length of
each trial in terms of control decisions, and averaging these
measures. The value intervals of cart position and pole po-
sition were partitioned into

�
and

%
unequal parts (smaller

size of partition towards the center) in the completely ob-
servable setting, and into 8 and 6 parts in the partially ob-
servable setting, correspondingly. We were making deci-
sions at the rate of 50 Hz, meaning, for example, that the
actual physical time of learning to balance a pole for 500
sequential ticks corresponds to 10 seconds of balancing.
Other parameters of the cart and pole balancing problem
were taken as described in the supplementary WWW page
for [30].

Figure 5 presents the learning curves obtained in the com-
pletely observable framework. The horizontal axis repre-
sents the number of trials, which corresponds to the num-

0

100

200

300

400

500

600

700

0 100000 200000 300000 400000 500000

A
ve

ra
ge

 p
er

fo
rm

an
ce

Number of trials

Pole Balancing : Partially Observable

SARSA 2NPG

3NPG

4NPG

10NPG

RP

Figure 6: Learning curves obtained with the partially ob-
servable pole-balancing problem. “RP” stands for the orig-
inal VAPS algorithm, as proposed by Baird and Moore;
“2NPG”, “3NPG” , “4NPG” and “10NPG”represent our
extension of VAPSused 2, 3, 4 and 10 nodes respectively.

ber of times we have dropped the pole. The vertical axis
represents the performance of the algorithm, measured as
explained above. We see that:� SARSA learns much faster than the original VAPS,

showing that value search is much more efficient that
policy search for this control problem,� our extension of VAPS with 2-node policy graph learns
slower than the original VAPS. This phenomenon can
be explained by the fact that the space of 2-nodes pol-
icy graphs is bigger than the space of RPs.

Figure 6 presents the results obtained in the partially ob-
servable framework. These results confirm our expecta-
tion that algorithms limited to reactive policy will fail. In
contrast, our algorithm increases its performance gradually,
showing that it is able to compensate the lack of observabil-
ity. The more nodes are given to the algorithm, the better
it performs. It is also striking to see that the performance
of the algorithm seems to improve by steps, which makes
difficult to predict where learning will stop. Because of
limited time, we could not continue the experiments be-
yond 500000 iterations so that we do not know if the per-
formance would continue to increase until the system may
balance infinitely long. We are currently running this ex-
periment and the results will be shown in a forthcoming
technical report [15]. The most significant current result
is that we can learn the structure of the policy graph that
extracts some useful information contained in the string of
past observations, to compensate, at least partially, for the
lack of observability. Pole balancing is a widely accepted
benchmark problem for dynamic system control and to the
best of our knowledge it has not been learned with partial
information.

5 CONCLUSION

We have derived an extension of a general algorithm that
enables it to learn policies using a memory. The basic prin-
ciple of this algorithm is to perform stochastic gradient de-
scent on finite-state controller parameters, which guaran-
tees local optimality of the solution produced. Moreover,
we have led an experimental study of this approach, and
compared it to classic (non-adaptive) algorithms in terms of
execution time and learning speed. At last, we showed that
our algorithm can solve a difficult problem such as pole-
balancing without having access to all the information usu-
ally required to solve it. Therefore, it is able to find the
structure of the policy graph that extracts the useful infor-
mation contained in the sequence of past observations to
compensate for the lack of observability at each time-step.
We believe that this constitutes a significant achievement
and proves that our algorithm can be efficient in some real-
world problems.

References

[1] K.J. Astrom. Optimal control of Markov decision pro-
cesses with incomplete state estimation. J. Math. Anl.
Appl., 10, 1965.

[2] L.C. Baird. Residual algorithms: Reinforcement
learning with function approximation. In Machine
Learning: Proceedings of the Twelfth International
Conference, San Francisco, CA, 1995. Morgan Kauf-
mann.

[3] L.C. Baird and A.W. Moore. Gradient descent for
general reinforcement learning. In Advances in Neu-
ral Information Processing Systems, 12. MIT Press,
Cambridge, MA, 1999.

[4] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic
Programming. Athena, Belmont, MA, 1996.

[5] C. Boutillier, T.L. Dean, and S. Hanks. Decision the-
oretic planning: structural assumptions and computa-
tional leverage. Journal of AI Research, To appear,
1999.

[6] A.R. Cassandra. Exact and Approximate Algorithms
for Partially Observable Markov Decision Processes.
PhD thesis, Brown University, 1998.

[7] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman.
Acting optimally in partially observable stochastic
domains. In Proceedings of the Twelfth National Con-
ference on Artificial Intelligence, 1994.

[8] E.A. Hansen. An improved policy iteration algorithm
for partially observable MDPs. In Advances in Neu-
ral Information Processing Systems, 10. MIT Press,
Cambridge, MA, 1997.

[9] E.A. Hansen. Finite-Memory Control of Partially
Observable Systems. PhD thesis, Department of
Computer Science, University of Massachusetts at
Amherst, 1998.

[10] E.A. Hansen. Solving POMDPs by searching in pol-
icy space. In Proceedings of the Eighth Conference on
Uncertainty in Artificial Intelligence, pages 211–219,
Madison, WI, 1998.

[11] M. Hauskrecht. Planning and Control in Stochas-
tic Domains with Imperfect Information. PhD thesis,
MIT, Cambridge, MA, 1997.

[12] O. Higelin. Optimal Control of Complex Structured
Processes. PhD thesis, University of Caen, France,
1999.

[13] R.A. Howard. Dynamic Programming and Markov
Processes. MIT Press, Cambridge, 1960.

[14] T. Jaakkola, S. Singh, and M.R. Jordan. Rein-
forcement learning algorithm for partially observable
Markov problems. In Advances in Neural Informa-
tion Processing Systems, 7. MIT Press, Cambridge,
MA, 1994.

[15] L.P. Kaelbling, K.E. Kim, N. Meuleau, and
L. Peshkin. Searching for finite-state POMDP
controllers. Technical Report CS-99-06, Brown-
University, 1999.

[16] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101, 1998.

[17] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Re-
inforcement learning: a survey. Journal of Artificial
Intelligence Research, 4, 1996.

[18] M.L. Littman. Memoryless policies: Theoretical lim-
itations and practical results. In From Animals to
Animats 3: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior. MIT
Press, Cambridge, MA, 1994.

[19] R.A. McCallum. Overcoming incomplete perception
with utile distinction memory. In The Proceedings
of the Tenth International Machine Learning Confer-
ence, Amherst, MA, 1993.

[20] R.A. McCallum. Reinforcement Learning with Selec-
tive Perception and Hidden State. PhD thesis, Univer-
sity of Rochester, Rochester, NY, 1995.

[21] N. Meuleau. The importance of impossible trajecto-
ries in the VAPS algorithm. In preparation, 1999.

[22] N. Meuleau, K.E. Kim, L.P. Kaelbling, and A.R. Cas-
sandra. Solving POMDPs by searching the space of
finite policies. Proceedings of the Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence, To ap-
pear, 1999.

[23] L. Peshkin, N. Meuleau, and L.P. Kaelbling. Learn-
ing policies with external memory. Proceedings of
the Sixteenth International Conference on Machine
Learning, To appear, 1999.

[24] M.L. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley, New
York, NY, 1994.

[25] J.K. Satia and R.E. Lave. Markov decision processes
with probabilistic observation of states. Management
Science, 20(1):1–13, 1973.

[26] S. Singh, T. Jaakkola, and M.R. Jordan. Learn-
ing without state-estimation in partially observable
Markovian decision processes. In Machine Learn-
ing: Proceedings of the Eleventh International Con-
ference. 1994.

[27] R.D. Smallwood and E.J. Sondik. The optimal con-
trol of partially observable Markov decision processes
over a finite horizon. Operations Research, 21:1071–
1098, 1973.

[28] E.J. Sondik. The optimal control of partially observ-
able Markov decision processes over the infinite hori-
zon: Discounted costs. Operations Research, 26,
1978.

[29] R.S. Sutton. Learning to predict by the method of
temporal differences. Machine Learning, 3:9–44,
1989.

[30] R.S. Sutton and A.G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

[31] M. Wiering and J. Schmidhuber. HQ-Learning. Adap-
tive Behavior, 6(2):219–246, 1997.

[32] R.J. Williams. Towards a theory of reinforcement-
learning connectionist systems. Technical Re-
port NU-CCS-88-3, Northeastern University, Boston,
MA, 1988.

